Termination w.r.t. Q of the following Term Rewriting System could be disproven:

Q restricted rewrite system:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

natsadx(zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(adx(x1)) = 2·x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(head(x1)) = 1 + x1   
POL(incr(x1)) = x1   
POL(n__adx(x1)) = 2·x1   
POL(n__incr(x1)) = x1   
POL(n__zeros) = 0   
POL(nats) = 1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 2 + x1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

adx(nil) → nil
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(adx(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(incr(x1)) = x1   
POL(n__adx(x1)) = 2·x1   
POL(n__incr(x1)) = x1   
POL(n__zeros) = 0   
POL(nil) = 2   
POL(s(x1)) = x1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ADX(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)
ACTIVATE(n__zeros) → ZEROS

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ADX(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)
ACTIVATE(n__zeros) → ZEROS

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

ADX(cons(X, L)) → ACTIVATE(L)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVATE(x1)) = 1 + x1   
POL(ADX(x1)) = 2 + x1   
POL(INCR(x1)) = 1 + x1   
POL(activate(x1)) = x1   
POL(adx(x1)) = 1 + x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = x1   
POL(n__adx(x1)) = 1 + x1   
POL(n__incr(x1)) = x1   
POL(n__zeros) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ RuleRemovalProof
QDP
                      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__incr(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.

INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVATE(x1)) = x1   
POL(ADX(x1)) = 0   
POL(INCR(x1)) = x1   
POL(activate(x1)) = 0   
POL(adx(x1)) = 0   
POL(cons(x1, x2)) = x2   
POL(incr(x1)) = 0   
POL(n__adx(x1)) = 0   
POL(n__incr(x1)) = 1 + x1   
POL(n__zeros) = 0   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented: none



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ RuleRemovalProof
                    ↳ QDP
                      ↳ QDPOrderProof
QDP
                          ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule INCR(cons(X, L)) → ACTIVATE(L) we obtained the following new rules:

INCR(cons(y_0, n__adx(y_2))) → ACTIVATE(n__adx(y_2))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ RuleRemovalProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ Instantiation
QDP
                              ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(y_0, n__adx(y_2))) → ACTIVATE(n__adx(y_2))
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

INCR(cons(y_0, n__adx(y_2))) → ACTIVATE(n__adx(y_2))
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ACTIVATE(n__adx(X)) → ADX(X)

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
zeroscons(0, n__zeros)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X


s = ACTIVATE(n__adx(activate(n__zeros))) evaluates to t =ACTIVATE(n__adx(activate(n__zeros)))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

ACTIVATE(n__adx(activate(n__zeros)))ACTIVATE(n__adx(zeros))
with rule activate(n__zeros) → zeros at position [0,0] and matcher [ ]

ACTIVATE(n__adx(zeros))ACTIVATE(n__adx(cons(0, n__zeros)))
with rule zeroscons(0, n__zeros) at position [0,0] and matcher [ ]

ACTIVATE(n__adx(cons(0, n__zeros)))ADX(cons(0, n__zeros))
with rule ACTIVATE(n__adx(X')) → ADX(X') at position [] and matcher [X' / cons(0, n__zeros)]

ADX(cons(0, n__zeros))INCR(cons(0, n__adx(activate(n__zeros))))
with rule ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L)))) at position [] and matcher [X / 0, L / n__zeros]

INCR(cons(0, n__adx(activate(n__zeros))))ACTIVATE(n__adx(activate(n__zeros)))
with rule INCR(cons(y_0, n__adx(y_2))) → ACTIVATE(n__adx(y_2))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.